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1. Introduction

In three-dimensional spacetime, there is no propagating (i.e., dynamical) degrees of freedom

in the bulk with either Einstein-Hilbert action or gravitational Chern-Simons term (GCS)

with coefficient 1/µ. However, it is known that the combined action with a vanishing

cosmological constant, which is known as “topologically massive gravity” in the literatures,

has a single propagating, massive, spin-2 mode [1]. Recently, there have been several

works toward the generalization with a negative cosmological constant Λ = −1/l2 [2,

3]. (For some earlier related works, see refs. [4, 5].) But the results do not seem to

be in consensus completely. In ref. [2], the wave function for the gravitons and their

corresponding energies are computed for the linearized excitations. And it is argued that

the theory is unstable/inconsistent for generic values of µ due to “negative” energies for the

massive gravitons. However at the critical value µl = 1, the massive gravitons “disappear”

due to vanishing energies. (See ref. [6] for a supporting analysis.) In ref. [3], the linearized

excitations of the gravitons as well as the scalar and photons are studied in the “light-

front” coordinates and it is argued that the massive graviton modes can not be gauged

away at the critical value of µ. (See also ref. [7] for a concurrent analysis.) Rather, at the

critical value, it is found that the linearized topologically massive gravity is equivalent to

“topologically massive electrodynamics” with a mass parameter µE/M = 2. And also, the

computations show some splitting of the masses for the gauge invariant fields even though

there is just one independent degrees of freedom.

On the other hand, it is also known that the three-dimensional (anti-) de Sitter gravity

with or without the GCS term can be written as a Chern-Simons gauge theory, which does

not have the dynamical degrees of freedom in the bulk [8]. This seems to be obviously

contradict to the existence of the gravitons in refs. [2, 3].

In this paper, I consider the constraint algebras in the fully non-linear theory in dreibein

formulation. From counting the number of first and second class constraints, I found that

the number of independent degrees of freedom, which equals to the number of propagating

graviton modes, is 1, regardless of the values of cosmological constant. I do not see any

– 1 –



J
H
E
P
0
9
(
2
0
0
8
)
0
8
4

evidence of the disappearing degrees of freedom at the critical value µl = 1 and this seems

to support the argument of ref. [3]. But, I note that there is a puzzling feature in this

result. I note also that the usual equivalence with Chern-Simons gauge theory does not

work for general circumstances.

2. Hamiltonian formulation

In this section, I consider the Hamiltonian formulation of the topologically massive gravity

with a cosmological constant Λ = −1/l2, in dreibein formulation [1, 4, 5, 8 – 11]. The action

on a manifold M, omitting some possible boundary terms, is given by

I = −
1

16πG

∫

M

[

2ea ∧ Ra+
1

3l2
ǫabce

a ∧ eb ∧ ec+
1

µ
ωa ∧

(

dωa+
1

3
ǫabcω

b ∧ ωc

)

+λa ∧ Ta

]

(2.1)

in form notation with the dreibein and spin-connection 1-forms ea = ea
µdxµ, ωa = ωa

µdxµ,

respectively.1 The first and the second terms are the conventional Einstein-Hilbert and the

cosmological constant terms, respectively, with the curvature Ra = dωa + (1/2)ǫabcω
b ∧ωc.

The last term is introduced in order to consider the zero-torsion condition

Ta ≡ dea + ǫabcω
b ∧ ec = 0 (2.2)

with an auxiliary field λa in which λa
i is dynamical because it multiplies a velocity ėai.

2 I

have chosen the sign in front of the Einstein-Hilbert part (with positive Newton’s constant

G) in agreement with the usual convention in anti-de Sitter space [2, 4, 5, 8 – 11, 14, 15]

and all other gravity theories in higher dimensions [16, 17], but opposite to the original

formulation without cosmological constant [1, 4] and ref. [3]. The reason for this choice is

that its black hole solution in the µ → ∞ limit, i.e., Einstein-Hilbert limit, can be sensible,

i.e., having “positive” black hole mass, only with this sign choice.3

The first-order formulation of the action (2.1) is given by

I =

∫

M

d3x[πaiėai + Πaiω̇ai + P aiλ̇ai − ea
0Ha − ωa

0Ka − λa
0Ta − ∂iγ

i] (2.3)

1The Greek letters (µ, ν, · · ·) denote the space-time indices and Latin (i, j, · · ·) denote the space indices.

Latin (a, b, · · ·) denote the internal Lorentz indices and the indices are raised and lowered by the metric

ηab=diag(−1, 1, 1) (see ref. [11] for more details). I also take the convention ǫ012 = −ǫ012 = 1 and ǫij
≡ ǫ0ij .

2It seems that there are some dual maps between ea
µ, ωa

µ, and λa
µ due to the same tensor structure in three

dimensions [8]. However, due to the difference in the internal Lorentz transformation δea = ǫabcebθc, δωa =

Dθa for the infinitesimal parameter θa, the fields λa and ea would transform differently also in order that the

defining action (2.1) be invariant under the transformation. So, the physical contents would be completely

different under the dual maps [12, 13]
3In the absence of the cosmological constant, there is no a priori reason to fix the sign since there are

no gravitons which can mediate the interactions between massive particles [18]. The sign is significant only

when the Chern-Simons interaction of (2.1) is introduced. The positivity of the gravitational energy [18]

and the attractiveness of the gravitational interaction [19] depend crucially on the overall sign.
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with the conjugate momenta πai, Πai, P ai for eai, ωai, λai, respectively, and (ǭij ≡

ǫij/16πG)

Ha = ǭij

[

Raij +
1

l2
ǫabce

b
ie

c
j − 2ǫabcλ

b
iω

c
j + 2∂jλai

]

,

Ka = ǭij

[

−
1

µ
Raij + Taij − 2ǫabcλ

b
ie

c
j

]

,

Ta = −ǭijTaij ,

γi = −ǭij

[

ea
i ωa0 −

1

µ
ωa

i ωa0 − 2λa
i ea0

]

. (2.4)

The Poisson brackets among the canonical variables are given by

{ea
i (x), πj

b (y)} = {ωa
i (x),Πj

b(y)} = {λa
i (x), P j

b (y)} = δa
b δj

i δ
2(x − y). (2.5)

3. Constraint algebras and number of degrees of freedom

The primary constraints of the action (2.1) are given by

Φ0
a ≡ π0

a ≈ 0, Φi
a ≡ πi

a − 2ǭijλaj ≈ 0,

Ψ0
a ≡ Π0

a ≈ 0, Ψi
a ≡ Πi

a + ǭij

(

2eaj −
1

µ
ωaj

)

≈ 0,

Γµ
a ≡ Pµ

a ≈ 0, (3.1)

from the canonical definition of conjugate momenta, πµ
a ≡ δI/δėa

µ, Πµ
a ≡ δI/δω̇a

µ, Pµ
a ≡

δI/δλ̇a
µ. Here, the weak equality ‘≈’ means that the constraint equations are used only

after working out a Poisson bracket. The conservation of the constraints C0 ≡ (Φ0
a,Ψ

0
a,Γ

0
a),

i.e., Ċ0 = {C0,HC} ≈ 0, which is a consistency condition, with the canonical Hamiltonian

HC =

∫

d2x[ea
0Ha + ωa

0Ka + λa
0Ta + ∂iγ

i] (3.2)

produces the secondary constraints,

Ha ≈ 0, Ka ≈ 0, Ta ≈ 0. (3.3)

With the primary and secondary constraints (3.1) and (3.3), I consider the extended Hamil-

tonian which can accommodate the arbitrariness in the equations of motions due to the

constraints:

HE = HC +

∫

d2x[ua
µΦµ

a + va
µΨµ

a + za
µPµ

a ]. (3.4)

The coefficients ua
µ, va

µ, za
µ are determined as follows, by considering the consistency con-

ditions, Ċi = {Ci,HE} ≈ 0 with Ci ≡ (Φi
a,Ψ

i
a,Γ

i
a):

uai = ∂ie0a − ǫabc(e
b
0ω

c
i + ωb

0e
c
i ),

vai = ∂iω0a − ǫabcω
b
0ω

c
i − µǫabc(e

b
0λ

c
i + λb

0e
c
i ),

zai = ∂iλ0a − ǫabc[λ
b
0(ω

c
i + µec

i ) + (ωb
0 + µeb

0)λ
c
i ] +

1

l2
ǫabce

b
0e

c
j. (3.5)
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The extended Hamiltonian (3.4) reads then as

HE =

∫

d2x[ea
0H̄a + ωa

0K̄a + λa
0T̄a + ua

0Φ
0
a + va

0Ψ0
a + za

0P 0
a + ∂iγ̄

i] (3.6)

with modified constraints,

H̄a ≡ Ha −DiΦ
i
a − µǫabcλ

b
iΨ

ci + ǫabc

(

−µλb
i +

1

l2
eb
i

)

P ci ≈ 0,

K̄a ≡ Ka − ǫabce
b
iΦ

ci −DiΨ
i
a − ǫabcλ

b
iP

ci ≈ 0,

T̄a ≡ Ta − µǫabce
b
iΨ

ci −DiP
i
a − µǫabce

b
iP

ci ≈ 0, (3.7)

and the covariant derivatives (Di)
c
a = δc

a∂i + ǫc
abω

b
i . After a tedious but straightforward

computation I get

{Φi
a(x),Ψj

b(y)} = 2ǭijηabδ
2(x − y),

{Φi
a(x), P j

b (y)} = −2ǭijηabδ
2(x − y),

{Φi
a(x), H̄b(y)} =

1

l2
ǫabcP

ciδ2(x − y),

{Φi
a(x), K̄b(y)} = −ǫabcΦ

ciδ2(x − y),

{Φi
a(x), T̄b(y)} = −µǫabc(Ψ

ci + P ci)δ2(x − y),

{Ψi
a(x),Ψj

b(y)} = −
2

µ
ǭijηabδ

2(x − y),

{Ψi
a(x), H̄b(y)} = −ǫabcΦ

ciδ2(x − y),

{Ψi
a(x), K̄b(y)} = −ǫabcΨ

ciδ2(x − y),

{Ψi
a(x), T̄b(y)} = −ǫabcP

ciδ2(x − y),

{P i
a(x), H̄b(y)} = −µǫabc(Ψ

ci + P ci)δ2(x − y),

{P i
a(x), K̄b(y)} = −ǫabcP

ciδ2(x − y),

{H̄a(x), H̄b(y)} ≈ {Ha(x), H̄b(y)} =

[

1

l2
ǫabcT

c − 2µǭijλaiλbj

]

δ2(x − y),

{H̄a(x), K̄b(y)} ≈ {Ha(x), K̄b(y)} = −ǫabcH
cδ2(x − y),

{H̄a(x), T̄b(y)} ≈ {Ha(x), T̄b(y)} = [−µǫabc(K
c + T c) + 2µǭijλaiebj ]δ

2(x − y),

{K̄a(x), K̄b(y)} ≈ {Ka(x), T̄b(y)} = −ǫabcK
cδ2(x − y),

{K̄a(x), T̄b(y)} ≈ {Ka(x), T̄b(y)} = ǫabcT
cδ2(x − y),

{T̄a(x), T̄b(y)} = [−2µǭijeaiebj − µ(eaiP
i
b − ebiP

i
a)]δ

2(x − y). (3.8)
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Using the above constraint algebras, one can easily see that there are thirdary constraints

from the consistencies of H̄a ≈ 0, T̄a ≈ 0 constraints (no additional constraints from

K̄a ≈ 0)

˙̄Ha(x) = {H̄a(x),HE}

≈ −2µǭijλai(e
b
0λbj − λb

0ebj) ≡ Σa ≈ 0,
˙̄T a(x) = {T̄a(x),HE}

≈ 2µǭijeai(e
b
0λbj − λb

0ebj) ≡ χa ≈ 0. (3.9)

The additional constraints Σa, χa have the following non-vanishing brackets:

{Σa(x),Φ0
b(y)} = −2µǭijλaiλbjδ

2(x − y),

{Σa(x),Φi
b(y)} = −2µǭijλajλb0δ

2(x − y),

{Σa(x), P 0
b (y)} = 2µǭijλaiebjδ

2(x − y),

{Σa(x), P i
b (y)} = −2µǭij[ηab(e

c
0λcj − λc

0ecj) − λajeb0]δ
2(x − y),

{χa(x),Φ0
b(y)} = 2µǭijeaiebjδ

2(x − y),

{χa(x),Φi
b(y)} = 2µǭij[ηab(e

c
0λcj − λc

0ecj) + eajλb0]δ
2(x − y),

{χa(x), P 0
b (y)} = −2µǭijeaiebjδ

2(x − y),

{χa(x), P i
b (y)} = −2µǭijeajeb0δ

2(x − y). (3.10)

Further investigations of the consistency conditions for the constraints Σa, χa, i.e.,

{Σa,H
′

E} ≈ 0, {χa,H
′

E} ≈ 0 with H
′

E = HE +
∫

d2x(αaΣa + βaχa) do not yield new

constraints but determine the coefficients ua
0, za

0 , αa, and βa. This completes Dirac’s con-

sistency procedure for finding the complete set of constraints. Although the algebras are

complicated nevertheless one can see that the constraints Ψ0
a, K̄a are first class and the con-

straints Φµ
a , Pµ

a , Ψi
a, Σa, χa, H̄a, T̄a are second class. Here, one might consider some spe-

cial configurations of λaµ and eaµ, i.e., Aab ≡ 2ǭijλaiλbj ≈ 0, Bab ≡ 2ǭijλaiebj ≈ 0, Cab ≡

2ǭijeaiebj ≈ 0 (neglecting the trivial configurations of λai = eai = 0) such that some of these

constraints may become first class or dependent (i.e., irregular) [20]. But, this is not rele-

vant to our case (for some related discussions, see also [21, 22]): Aab ≈ 0 or Cab ≈ 0 implies

that λaµ or eaµ, respectively, is not invertible from the fact of det(λaµ) = ǫabcλa0Abc ≈ 0,

det(eaµ) = ǫabcea0Cbc ≈ 0, but the invertibility has been implicitly assumed from the con-

struction;4 moreover, Bab ≈ 0 would not be generally true since this implies, from (2.4),

ǭijRaij = 0, i.e., pure Einstein gravity solutions, certainly not a restriction I wish to con-

sider.

To compute the number of dynamical degrees of freedom I use the standard formula,

at any point x,

s =
1

2
(2n − 2N1 − N2), (3.11)

where 2n is the number of canonical variables, N1 is the number of first class constraints,

and N2 is the number of second class constraints. Then, according to the above constraint

4In quantum theory, the non-invertible eaµ might be permitted. See ref. [8] for example.
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algebras, I have n = 9 [ea
µ, ωa

µ, λa
µ], N1 = 2, and N2 = 12 for “each internal index a”. This

represents that the system in terms of the metric gµν = ea
µeb

νηab
5 has a single dynamical

degrees of freedom which equals to the number of propagating graviton modes.

Here, in counting the number of degrees of freedom it would be important to check

that they possess a well defined spectrum. However, unfortunately the kinematic counting

of (3.11) gives no information as to their (in)stabilities.

Before finishing this section, several remarks are in order. First, the presence of cos-

mological constant does not modify second class constraint algebras nor the number of the

first class constraints. So, I do not see any evidence of the disappearing degrees of freedom

at the critical value µl = 1: There are two possible scenarios for this effect, i.e., (a) there

is an additional “first” class constraint, representing a new symmetry, at the critical value

of the cosmological constant [24], (b) there are compensation terms from the cosmological

constant in second class constraint algebras and the complete compensation is achieved at

the critical value such that the second class constraint becomes first class [25]; but, neither

of these “symmetry enhancements” do not occur in the system. This seems to support

the argument of ref. [3]. Second, the action (2.1) is not equivalent to the Chern-Simons

gauge gravity [8, 11], generally. They are equivalent only when one identify λa
µ = ea

µ/µl2

which changes enormously the constraint algebras. Actually, the constraint analysis of this

system [26] leads to n = 6, N1 = 4, N2 = 4 so that s = 0, i.e., no dynamical degrees of

freedom. This is consistent with the fact that the Chern-Simons gauge theory does not

have the dynamical degrees of freedom.6 On the other hand, if one does not introduce the

last torsion term in (2.1) such that the torsion does not vanish anymore, one has the same

numbers of N1 = 4, N2 = 4 such that s = 0 also.

4. Discussion

I have shown that counting the number of first and second class constraints leads to a

“single” dynamical degrees of freedom for the metric, regardless of the value of the cosmo-

logical constant Λ = −1/l2. This seems to support the argument of ref. [3] (and ref. [7]

also), but this is rather surprising from the following reasons. First, in the context of

the bulk gravity action (2.1), it is known that there are critical values of the cosmological

constant |µl| = 1 [11, 27], where the characters of the BTZ black hole solution and matter

fields in the black hole background are dramatically changed. Second, in the context of

boundary CFT at the asymptotic infinity also, the structure of the CFT and its Hilbert

space changes at the critical value. But, at present, there is no clear understanding of why

the fully non-linear constraints do not show up the above critical features [11].

5It would be also interesting to consider the constraint algebras in the metric formulation directly [23],

where the GCS term is a third-derivative order and Ostrogradsky method is needed [13].
6Three-dimensional gravity without cosmological constant and GCS term can be described by ISO(2, 1)

Chern-Simons gauge theory [8]. However, in the presence of the GCS term, a second invariant quadratic

form for the Lie algebra is degenerate such that the gauge theory formulation does not exist. This is

consistent with the existence of a graviton in the system [1].

– 6 –
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